ENGINEERING ECONOMY

Depreciation \& Income Tax

Definition

"Loss of value for a fixed/current asset"
\square Current assets are balance sheet accounts that represent the value of all assets that can reasonably expect to be converted into cash within one year.
\square Current assets are important to businesses because they can be used to fund day-to-day operations and pay ongoing expenses.

Why Do We Consider Depreciation?

Business Expense: Depreciation is viewed as a part of business expenses that reduce taxable income.

Gross Income -Expenses:
 (Cost of goods sold)
 (Depreciation)
 (operating expenses)

Taxable Income

- Income taxes

Net income (profit)

Depreciated Assets

* Assets used in business or held for production of income
* Assets having a definite useful life and a life longer than one year (you can never depreciate land)
Assets that must wear out, become obsolete or lose value

Depreciated Assets

A qualifying asset for depreciation must satisfy all of the three conditions above. Ex: buildings, machinery, equipment, vehicles etc.

The depreciated assets are not valid to inventory or stock sale, or investment property.

Terms in Depreciation

\square Useful life - how many years will an asset be useful to a company?
\square Salvage value - Asset's estimated value at the end of its useful life. 10\% rule of the initial value
\square Book value BVt - Remaining undepreciated capital investment in year \dagger

Depreciation Method

Straight of Line Depreciation (SLD)

Sum of Years Digits Depreciation (SOYD)

Amount of depreciation Amount of depreciation cost is equal annually

Annual Depreciation:
SLD $=\frac{1}{N}(I-S)$ cost isn't equal annually

- Based on sum of years digit
Annual depreciation:
$\mathrm{SOYD}_{\mathrm{t}}=\frac{N-(\mathbf{t}-\mathbf{1})}{\Sigma \text { digit }}(I-S)$
$\mathrm{N}=$ useful life
(recovery period)
I = investment
$S=$ salvage value
\sum digit $=\frac{N}{2}(N+1)$
$\mathrm{N}=$ useful life (recovery period)
$t=\operatorname{period}($ year $t)$

Double Declining Balance Depreciation (DDBD)

- Amount of depreciation cost isn't equal annually

$$
\operatorname{DDBD}_{\mathrm{n}}=\frac{2 \mathrm{I}}{\mathrm{~N}}\left(1-\frac{2}{\mathrm{~N}}\right)^{\mathrm{n}-1}
$$

$$
\mathrm{BV}_{\mathrm{n}}=\mathrm{I}\left(1-\frac{2}{\mathrm{~N}}\right)^{\mathrm{n}}
$$

$N=$ useful life (recovery period)
| = investment

Straight of Line Depreciation (SLD)

\square Travel agent has mini bus Rp 150 million. The useful life of the minis bus is 5 years and it can be sold $\operatorname{Rp} 50$ million at the end of its life.
\square Estimate the annual depreciation
\square Total of 3 years depreciation
\square Book value after three years usage using SLD method

Answer

Annual depreciation:
SLD $=\frac{1}{N}(I-S)$
SLD $=\frac{1}{5}(150-50)$
SLD = Rp 20 million/years

Apply to the table

\square Total of depreciation cost after 3 years usage:

- $\operatorname{Dep}_{\mathrm{t}}=\frac{t}{N}(I-S)$
\sum Dep $_{3}=\frac{3}{5}(150-50)$
$\Sigma \operatorname{Dep}_{3}=\operatorname{Rp} 60$ Million
\square Book value at the end of year 3:
$B V_{3}=1-\sum D^{2} p_{3}$
$B V_{3}=150-60$
$B V_{3}=90$ juta

Sum of Years Digits Depreciation (SOYD)

Travel agent has mini bus Rp 150 million. The useful life of the minis bus is 5 years and it can be sold $\operatorname{Rp} 30$ million at the end of its life.
\square Remarks :
Investment(I) = Rp 150 milion salvage value(S)=Rp 30 milion useful life $(N)=5$ years

The first step for SOYD method

Calculate the value of digit!
\sum digit $=\frac{N}{2}(N+1)$

- digit $=\frac{5}{2}(5+1)$
\square digit $=15$

Calculate annual depreciation

$$
\begin{aligned}
& \text { SOYD }_{\mathrm{t}}=\frac{N-(t-1)}{\Gamma \text { digit }}(I-S) \\
& \mathrm{t}=1 \rightarrow \text { SOYD }_{\mathrm{t}}=\frac{5-(\mathbf{1 - 1)}}{15}(\mathbf{1 5 0}-\mathbf{3 0})=\frac{5}{15}(\mathbf{1 2 0})=40 \\
& \mathrm{t}=2 \rightarrow \text { SOYD }_{\mathrm{t}}=\frac{5-(2-1)}{15}(\mathbf{1 5 0}-\mathbf{3 0})=\frac{4}{15}(\mathbf{1 2 0})=32 \\
& \mathrm{t}=3 \rightarrow \text { SOYD }_{\mathrm{t}}=\frac{3-(\mathrm{s-1})}{15}(\mathbf{1 5 0} \mathbf{- 3 0})=\frac{3}{15}(\mathbf{1 2 0})=\mathbf{2 4} \\
& \mathrm{t}=4 \rightarrow \text { SOYD }_{\mathrm{t}}=\frac{5-(4-1)}{15}(\mathbf{1 5 0}-\mathbf{3 0})=\frac{2}{15}(\mathbf{1 2 0})=16 \\
& \mathrm{t}=5 \rightarrow \mathrm{SOYD}_{\mathrm{t}}=\frac{\mathbf{5 - (5 - 1)}}{15}(\mathbf{1 5 0}-\mathbf{3 0})=\frac{1}{15}(\mathbf{1 2 0})=8
\end{aligned}
$$

Apply to the table

N	BV	SOYD	\sum Dep
0	150		
1	110	40	40
2	78	-32	72
3	54	24	96
4		16	112
5	30	8	120

book value $=$ salvage then \rightarrow STOP !

Now if we use DDBD method

\square Remarks :
Investment(I) = Rp 150 milion salvage value $(S)=R p 30$ milion useful life $(N)=5$ years
$\operatorname{DDBD}_{\mathrm{n}}=\frac{2 \mathrm{I}}{\mathrm{N}}\left(1-\frac{2}{\mathrm{~N}}\right)^{\mathrm{n}-1}$
$\mathrm{DDBD}_{1}=\frac{2(150)}{5}\left(1-\frac{2}{5}\right)^{1-1}=60$
$\mathrm{DDBD}_{2}=\frac{2(150)}{5}\left(1-\frac{2}{5}\right)^{2-1}=36$
$\mathrm{DDBD}_{4}=\frac{2(150)}{5}\left(1-\frac{2}{5}\right)^{4-1}=12,96$
$\mathrm{DDBD}_{5}=\frac{2(150)}{5}\left(1-\frac{2}{5}\right)^{5-1}=7,776$
$\mathrm{DDBD}_{3}=\frac{2(150)}{5}\left(1-\frac{2}{5}\right)^{3-1}=21,6$

$$
\mathrm{BV}_{5}=150\left(1-\frac{2}{5}\right)^{5}=11,66
$$

Apply to the table

N	BV	DDBD	ミDep
0	150	$(-)$	
1	90	$(=)$	60
2	54	36	60
3	32,4	21,6	96
4	19,44	12,96	130,56
5	11,66	7,78	138,34

book value \neq salvage value

Book Value Problem

\square DDBD \rightarrow if we using this method
" book value \neq salvage value"
\square If Book value ${ }_{t=n}>$ salvage value \rightarrow problem If Book value ${ }_{t=n}=$ salvage value then OK If Book value t_{t} < salvage value then OK

Some nations permits zero residual value (the smallest value)

Book Value Problem

Book value $_{t=n}>$ salvage value "it will be sunk cost and must be avoided"

How to solve this problem \rightarrow

1. Continue the calculation of depreciation using 2 methods DDBD and SLD
2. However you have to change SLD formula into this:

$$
S L D_{t}=\frac{1}{N-(n-1)}\left(\mathrm{BV}_{\mathrm{t}-1}-\mathrm{S}\right)
$$

Book Value Problem

$$
S L D_{t}=\frac{1}{N-(n-1)}\left(B V_{t-1}-S\right)
$$

$\square \mathrm{N}-(\mathrm{n}-1)=$ remaining recovery period
$\square \mathrm{BV}_{\mathrm{t}-1} \quad=$ book value from previous year using DDBD method

Book Value Problem

1. Continue the calculation of depreciation using 2 methods DDBD and SLD
2. Select larger depreciation amount
3. When SLD \geq DDBD, the switching is conducted

Practice Problem

\square Travel agent has purchased second bus worth to Rp 700 million. The useful life of the bus is 5 years and it can be sold Rp 30 million at the end of its life.
\square Remarks :
Investment(I) $=\operatorname{Rp} 700$ milion
salvage value $(S)=\operatorname{Rp} 30$ milion
useful life $(N)=5$ years

Answer

Investigate the book value at the end of period

$$
\begin{aligned}
& \mathrm{BV}_{\mathrm{n}}=\mathrm{I}\left(1-\frac{2}{\mathrm{~N}}\right)^{\mathrm{n}} \\
& \mathrm{BV}_{5}=700\left(1-\frac{2}{5}\right)^{5}=54,432
\end{aligned}
$$

Book value > salvage value- \rightarrow DDBD to SLD

One by one step DDBD to SLD

DDBD to SLD conversion

t	$\mathbf{S L D}_{\mathbf{t}}=\frac{1}{N-(n-1)}\left(\mathbf{B V}_{\mathrm{t}-1}-\mathbf{S}\right)$	$\operatorname{DDBD}_{\mathrm{n}}=\frac{2 I}{N}\left(1-\frac{2}{N}\right)^{\mathrm{n}-1}$	$\mathbf{B V} \mathbf{n}_{\mathbf{n}}=I\left(1-\frac{2}{N}\right)^{\mathrm{n}}$	Remarks
0		-------------	700	
1	$\frac{1}{5-(1-1)}(700-30)=134$	$\frac{2(700)}{5}\left(1-\frac{2}{5}\right)^{1-1}=280$	$700-280=420$	DDBD
2	$\frac{1}{5-(2-1)}(420-30)=97.5$	$\frac{2(700)}{5}\left(1-\frac{2}{5}\right)^{2-1}=168$	$420-168=252$	DDBD
3	$\frac{1}{5-(3-1)}(252-30)=74$	$\frac{2(700)}{5}\left(1-\frac{2}{5}\right)^{3-1}=100.8$	252-100.8=151.2	DDBD
4	$\frac{1}{5-(4-1)}(151.2-30)=60.6$	$\frac{2(700)}{5}\left(1-\frac{2}{5}\right)^{4-1}=60.48$	151.2-60.6=90.6	Switch to SLD
5	$\frac{1}{5-(4-1)}(151.2-30)=60.6$	-----	$90.6-60.6=30$	Switch to SLD

Depreciation comparison

\square DDBD and SLD is commonly used in Indonesia except SOYD
\square DDBD is recommended if you want to find income after tax
\square SOYD and DDBD are suitable for asset which the deterioration or loss the value is very quick
e.g: production machine

Excel Function

=SLN(cost, salvage, life)
SOYD
=SYD(cost, salvage, life, period)
DDBD
=DDB(cost, salvage, life, period [factor])
DDBD conversion
=DDB(cost, salvage, life, start_period,End_period,[factor],
[no _switch])
Factor default 200\%/N

After Tax Cash Flow

Taxable income $=\Sigma$ income- interest- Depreciation

Tax= taxable income x tax rate (\%)

After Tax Cash Flow= Before Tax Cash Flow- tax

The more amount depreciation cost, the less taxable income and of course the tax as well

Practice Problem

investment
Annual Benefit
Annual Cost
Over haul ${ }_{(t=5)}$
Salvage value
Useful life
Corporate tax

Rp 700 million
Rp 130 million
Rp 30 million
Rp 70 million
Rp 300 million
8 years
10% per years
"how much will the corporate pay in income taxes for the year using SLD and DDBD?

SLD Method

n	Before tax cash flow			$\text { SLD }=1 / \mathrm{N}(I-$ S)	Taxable income	$\begin{gathered} \operatorname{tax} \\ 10 \% \end{gathered}$	After tax cash flow
	(-)	(+)	NCF				
(a)	(b)	(c)	($\mathrm{d}=\mathrm{c}-\mathrm{b}$)	(e)	(f=d-e)	($\mathrm{g}=\mathrm{fx} 10 \%$)	($\mathrm{h}=\mathrm{d}-\mathrm{g}$)
0	700		-700				-700
1	30	130	100	50	50	5	95
2	30	130	100	50	50	5	95
3	30	130	100	50	50	5	95
4	30	130	100	50	50	5	95
5	100	130	30	50	-20	0	30
6	30	130	100	50	50	5	95
7	30	130	100	50	50	5	95
8	30	130	100	50	50	5	95
S		300	300				300

DDBD Method

n	Before tax cash flow			$\begin{gathered} \mathrm{DDBD}=2 / \mathrm{N} \\ \left(B V_{t}-1\right) \end{gathered}$	$B V_{t}$	Taxable income	Pajak 10 \%	After tax cash flow
	(-)	(+)	NCF					
(a)	(b)	(c)	($d=c-b$)	(e)	($\mathrm{ft}=\mathrm{dt}-1-\mathrm{BV}$)	($\mathrm{g}=\mathrm{d}-\mathrm{e}$)	($\mathrm{h}=\mathrm{gx} 10 \%$)	(i=d-h)
0	700		-700		700			-700
1	30	130	100	175	525	-75	-7.5	107.5
2	30	130	100	131	393.75	-31.25	-3.125	103.125
3	30	130	100	98	295.31	1.5625	0.15625	99.84375
4	30	130	100	74	221.48	26.17188	2.6171875	97.38281
5	100	130	30	55	166.11	-25.3711	0	30
6	30	130	100	42	124.58	58.47168	5.84716797	94.15283
7	30	130	100	31	93.44	68.85376	6.88537598	93.11462
8	30	130	100	23	70.08	76.64032	7.66403198	92.33597
S		300	300					300

