ENGINEERING ECONOMY

Depreciation & Income Tax

Definition

"Loss of value for a fixed/current asset"

- Current assets are balance sheet accounts that represent the value of all assets that can reasonably expect to be converted into cash within one year.
- Current assets are important to businesses because they can be used to fund day-to-day operations and pay ongoing expenses.

Why Do We Consider Depreciation?

Business Expense:

Depreciation is viewed as a part of business expenses that reduce taxable income. Gross Income -Expenses: (Cost of goods sold) (Depreciation) (operating expenses)

Taxable Income

- Income taxes

Net income (profit)

Depreciated Assets

- Assets <u>used in business</u> or held for production of income
- Assets having a <u>definite useful life</u> and a life <u>longer than one year</u> (you can never depreciate land)
- Assets that must <u>wear out</u>, become obsolete or lose value

Depreciated Assets

A qualifying asset for depreciation must satisfy <u>all</u> of the three conditions above. Ex: buildings, machinery, equipment, vehicles etc.

The depreciated assets are **not valid to inventory or stock sale, or investment property.**

Terms in Depreciation

- Useful life how many years will an asset be useful to a company?
- Salvage value Asset's estimated value at the end of its useful life. 10% rule of the initial value
- Book value BVt Remaining undepreciated capital investment in year t

Depreciation Method

Straight of Line Depreciation (SLD)	Sum of Years Digits Depreciation (SOYD)	Double Declining Balance Depreciation (DDBD)
Amount of depreciation cost is equal annually	 Amount of depreciation cost isn't equal annually Based on sum of years digit 	 Amount of depreciation cost isn't equal annually
Annual Depreciation: $SLD = \frac{1}{N}(I - S)$ N = useful life (recovery period) I = investment	Annual depreciation: $SOYD_{t} = \frac{N - (t - 1)}{\sum \text{ digit}} (I - S)$ $\sum \text{ digit} = \frac{N}{2} (N + 1)$ $N = \text{useful life} (recovery)$	$DDBD_{n} = \frac{2I}{N} (1 - \frac{2}{N})^{n-1}$ $BV_{n} = I(1 - \frac{2}{N})^{n}$ $N = useful life (recovery)$
S = salvage value	N = useful life (recovery period) t = period (vear t)	period) I = investment

Straight of Line Depreciation (SLD)

- Travel agent has mini bus Rp 150 million. The useful life of the minis bus is 5 years and it can be sold Rp 50 million at the end of its life.
- Estimate the annual depreciation
- Total of 3 years depreciation
- Book value after three years usage using SLD method

Answer

Annual depreciation: $SLD = \frac{1}{N} (I - S)$ $SLD = \frac{1}{5} (150 - 50)$ SLD = Rp 20 million/years

Apply to the table

Years t-	Book	Depreciation 1/N (I-S)	∑ Dep _t
	value		
0	150 🛰	(-) 0	0
1	130 <	(=) ₍₋₎ 20	20
2	110 <	$(=)_{(-)}$ 20	40
3	90 <	(=) () 20	60
4	70 🛰	(=) (-) 20	80
5	50 🗲	(=) 20	100

book value = salvage then \rightarrow STOP !

- Total of depreciation cost after 3 years usage:
 ∑ Dep_t = ^t/_N (I − 5)
 ∑ Dep₃ = ³/₅ (150 − 50)
- $\Box \sum Dep_3 = Rp 60 Million$

Book value at the end of year 3 :

 $BV_3 = I - \sum Dep_3$ $BV_3 = 150 - 60$ $BV_3 = 90$ juta

Sum of Years Digits Depreciation (SOYD)

- Travel agent has mini bus Rp 150 million. The useful life of the minis bus is 5 years and it can be sold Rp 30 million at the end of its life.
- Remarks :

Investment(I) = Rp 150 milion salvage value(S)= Rp 30 milion useful life (N) = 5 years

The first step for SOYD method

Calculate the value of digit!

- $\Box \sum \text{digit} = \frac{N}{2}(N+1)$ $\Box \sum \text{digit} = \frac{5}{2}(5+1)$
- □ ∑ digit = 15

Calculate annual depreciation

$$SOYD_{t} = \frac{N - (t - 1)}{\Sigma \text{ digit}} (I - S)$$

$$t = 1 \rightarrow SOYD_{t} = \frac{5 - (1 - 1)}{15} (150 - 30) = \frac{5}{15} (120) = 40$$

$$t = 2 \rightarrow SOYD_{t} = \frac{5 - (2 - 1)}{15} (150 - 30) = \frac{4}{15} (120) = 32$$

$$t = 3 \rightarrow SOYD_{t} = \frac{5 - (3 - 1)}{15} (150 - 30) = \frac{3}{15} (120) = 24$$

$$t = 4 \rightarrow SOYD_{t} = \frac{5 - (4 - 1)}{15} (150 - 30) = \frac{2}{15} (120) = 16$$

$$t = 5 \rightarrow SOYD_{t} = \frac{5 - (5 - 1)}{15} (150 - 30) = \frac{1}{15} (120) = 8$$

Apply to the table

Ν	BV	SOYD	∑ Dep
0	150	(-)	
1	110	=) 40	40
2	78 🔫	32	72
3	54 🧲	24	96
4	38 🧲	16	112
5	30	8	120

book value = salvage then \rightarrow STOP !

Now if we use DDBD method

Remarks :

Investment(I) = Rp 150 milion salvage value(S)= Rp 30 milion useful life (N) = 5 years

$$DDBD_{n} = \frac{2I}{N} (1 - \frac{2}{N})^{n-1}$$

$$DDBD_{1} = \frac{2(150)}{5} (1 - \frac{2}{5})^{1 - 1} = 60$$

$$DDBD_{2} = \frac{2(150)}{5} (1 - \frac{2}{5})^{2 - 1} = 36$$

$$DDBD_{3} = \frac{2(150)}{5} (1 - \frac{2}{5})^{3 - 1} = 21,6$$

$$DDBD_{5} = \frac{2(150)}{5} (1 - \frac{2}{5})^{5 - 1} = 7,776$$

$$\left(BV_n = I(1 - \frac{2}{N})^n \right)$$

$$BV_5 = 150 \left(1 - \frac{2}{5}\right)^5 = 11,66$$

Apply to the table

Ν	BV	DDBD	∑Dep
0	150	(-)	
1	90 🥣	=) 60	60
2	54 🔫	36	96
3	32,4	21,6	117,6
4	19,44	12,96	130,56
5	11,66	7,78	138,34

book value ≠ salvage value

- DDBD \rightarrow if we using this method
- " book value ≠ salvage value"

If Book value_{t=n} > salvage value → problem If Book value_{t=n} = salvage value then OK If Book value_{t=n} < salvage value then OK</p>

Some nations permits zero residual value (the smallest value)

Book value_{t=n} > salvage value "it will be sunk cost and must be avoided"

 \square How to solve this problem \rightarrow

- Continue the calculation of depreciation using 2 methods DDBD and SLD
- 2. However you have to change SLD formula into this:

$$\mathsf{SLD}_{\mathsf{t}} = \frac{1}{N - (n-1)} (\mathsf{BV}_{\mathsf{t}-1} - \mathsf{S})$$

$$\mathsf{SLD}_{\mathsf{t}} = \frac{1}{N - (n-1)} (\mathsf{BV}_{\mathsf{t}-1} - \mathsf{S})$$

N-(n-1) = remaining recovery period BV_{t-1} = book value from previous year using DDBD method

- Continue the calculation of depreciation using 2 methods DDBD and SLD
- 2. Select larger depreciation amount
- When SLD ≥ DDBD, the switching is conducted

Practice Problem

Travel agent has purchased second bus worth to Rp 700 million. The useful life of the bus is 5 years and it can be sold Rp 30 million at the end of its life.

Remarks :

Investment(I) = Rp 700 milion salvage value(S) = Rp 30 milion useful life (N) = 5 years

Answer

Investigate the book value at the end of period

$$BV_{n} = I(1 - \frac{2}{N})^{n}$$
$$BV_{5} = 700 (1 - \frac{2}{5})^{5} = 54,432$$

□ Book value > salvage value-→DDBD to SLD

One by one step DDBD to SLD

DDBD to SLD conversion

t	$SLD_{t} = \frac{1}{N - (n-1)} (BV_{t-1} - S)$	$\mathbf{DDBD}_{\mathbf{n}} = \frac{2I}{N} \left(1 - \frac{2}{N}\right)^{n-1}$	$\mathbf{BV}_{\mathbf{n}} = I \left(1 - \frac{2}{N}\right)^{\mathbf{n}}$	Remarks
0		·	700	
1	$\frac{1}{5-(1-1)}(700-30) = 134$	$\frac{2(700)}{5} \left(1 - \frac{2}{5}\right)^{1-1} = 280$	700-280= 420	DDBD
2	$\frac{1}{5-(2-1)}(420-30) = 97.5$	$\frac{2(700)}{5} \left(1 - \frac{2}{5}\right)^{2-1} = 168$	420-168= 252	DDBD
3	$\frac{1}{5-(3-1)}(252-30) = 74$	$\frac{2(700)}{5} \left(1 - \frac{2}{5}\right)^{3-1} = 100.8$	252-100.8=151.2	DDBD
4	$\frac{1}{1}$ (151 2– 30) = 60 6	$2(700) (1 2)^{4-1}$	151.2-60.6= 90.6	Switch to
	5-(4-1) (10112 (00) = 0010	$\frac{1}{5}\left(1-\frac{1}{5}\right) = 60.48$		SLD
5	$\frac{1}{1}$ (151,2–30) = 60.6		90.6-60.6=30	Switch to
	5-(4-1)			SLD

Depreciation comparison

- DDBD and SLD is commonly used in Indonesia except SOYD
- DDBD is recommended if you want to find income after tax
- SOYD and DDBD are suitable for asset which the deterioration or loss the value is very quick

e.g: production machine

Excel Function

- =SLN(cost, salvage, life)
- SOYD
- =SYD(cost, salvage, life, period)
- DDBD
- =DDB(cost, salvage, life, period [factor])
- DDBD conversion
- =DDB(cost, salvage, life, start_period,End_period,[factor],
 [no _switch])
- Factor default 200%/N

After Tax Cash Flow

Taxable income= ∑ income- interest- Depreciation

Tax= taxable income x tax rate (%)

After Tax Cash Flow= Before Tax Cash Flow- tax

The more amount depreciation cost, the less taxable income and of course the tax as well

Practice Problem

investment Annual Benefit Annual Cost Over haul_(t=5) Salvage value Useful life Corporate tax Rp 700 million Rp 130 million Rp 30 million Rp 70 million Rp 300 million 8 years 10% per years

"how much will the corporate pay in income taxes for the year using SLD and DDBD?

SLD Method

	Before tax cash flow			SLD = 1/N (I-	Taxable	tax	After tax
n	(-)	(+)	NCF	S)	income	10 %	cash flow
(a)	(b)	(c)	(d=c-b)	(e)	(f=d-e)	(g=fx10%)	(h=d-g)
0	700		-700				-700
1	30	130	100	50	50	5	95
2	30	130	100	50	50	5	95
3	30	130	100	50	50	5	95
4	30	130	100	50	50	5	95
5	100	130	30	50	-20	0	30
6	30	130	100	50	50	5	95
7	30	130	100	50	50	5	95
8	30	130	100	50	50	5	95
S		300	300				300

DDBD Method

	Before tax cash flow			DDBD = 2/N		Taxable		After tax
n	(-)	(+)	NCF	(BV _t -1)	BV _t	income	Pajak 10 %	cash flow
(a)	(b)	(c)	(d=c-b)	(e)	(ft = dt-1 - BVt)	(g=d-e)	(h=gx10%)	(i=d-h)
0	700		-700		700			-700
1	30	130	100	175	525	-75	-7.5	107.5
2	30	130	100	131	393.75	-31.25	-3.125	103.125
3	30	130	100	98	295.31	1.5625	0.15625	99.84375
4	30	130	100	74	221.48	26.17188	2.6171875	97.38281
5	100	130	30	55	166.11	-25.3711	0	30
6	30	130	100	42	124.58	58.47168	5.84716797	94.15283
7	30	130	100	31	93.44	68.85376	6.88537598	93.11462
8	30	130	100	23	70.08	76.64032	7.66403198	92.33597
S		300	300					300