ENGINEERING ECONOMY

Nominal and Effective Interest Rates

Introduction

- If payments occur more frequently than annual, how do you calculate economic equivalence?
- If interest period is other than annual, how do you calculate economic equivalence?

Introduction

- However, interest can be managed in certain period for example: monthly, quarterly, semiannually, etc

12\% Compounded Monthly

- What It Really Means?
- Interest rate per month (i) = 12\%/12 = 1\%
- Number of interest periods per year (N) = 12
- In words,
- Bank will charge 1% interest each month on your unpaid balance, if you borrowed money
- You will earn 1\% interest each month on your remaining balance, if you deposited money

Nominal VS Effective

Nominal Interest Rate:
 Interest rate quoted based on an annual period

Effective Interest Rate:

 Actual interest earned or paid in a year or some other time period
9\% Compounded Monthly

Question:

Suppose that you invest \$1 for 1 year at 9\% compounded monthly. How much interest would you earn?
Answer:
$P=\$ 1, n=12, A P R=9 \%$, monthly interest $=9 \% / 12=0,75 \%$
$\mathrm{F}=\mathrm{P}(\mathrm{F} / \mathrm{P}, \mathrm{I}, \mathrm{n})$
$F=1(F / P, 0.75 \%, 12)$
$\mathrm{F}=1$ (1.094)
$\mathrm{F}=1,094$
Interest $=1,094-1=0,094$ or $9,4 \%$
12 times earnings

9\% Compounded quarterly

Question:

Suppose that you invest \$1 for 1 year at 9\% compounded quarterly. How much interest would you earn?
Answer:
$P=\$ 1, n=12, A P R=9 \%$, quarterly interest $=9 \% / 3=3 \%$ (every 4 months)
$\mathrm{F}=\mathrm{P}(\mathrm{F} / \mathrm{P}, \mathrm{I}, \mathrm{n})$
$F=1(F / P, 3 \%, 3)$
$F=1$ (1.093)
$F=1,093$
Interest $=1,093-1=0,093$ or $9,3 \%$

9\% Compounded Semiannually

Question:

Suppose that you invest $\$ 1$ for 1 year at 9% compounded semiannually. How much interest would you earn?
Answer:
$P=\$ 1, n=12, A P R=9 \%$, semiannually interest $=9 \% / 2=4,5 \%$ (every 6 months)
$F=P(F / P, I, n)$
$F=1(F / P, 4.5 \%, 2)$
$\mathrm{F}=1$ (1.092)
$F=1,092$
Interest $=1,092-1=0,092$ or $9,2 \%$
2 times

9\% Compounded annually

Question:

Suppose that you invest $\$ 1$ for 1 year at 9% compounded annually. How much interest would you earn?

Answer:

$P=\$ 1, n=12, A P R=9 \%$,
$\mathrm{F}=\mathrm{P}(\mathrm{F} / \mathrm{P}, \mathrm{I}, 1)$
$\mathrm{F}=1$ (F/P, 9\%, 1)
$\mathrm{F}=1$ (1.090)
$\mathrm{F}=1,090$
Interest $=1,090-1=0,092$ or $9,0 \%$
1 time

Effective Annual Interest Rate (Yield

$$
i_{a}=(1+r / M)^{M}-1 \text { or } i_{a}=(1+i)^{M}-1
$$

$r=$ nominal interest rate per year
$i_{a}=$ effective annual interest rate
$M=$ number of interest periods per year

Practice Problem

- If a savings bank pays $1,5 \%$ interest every 3 months, what are the nominal and effective interest rate per year?
- Solution:

- Nominal interest rate per year: $r=4 \times 1,5 \%=6 \%$

$$
\begin{aligned}
& i_{a}=(1+r / M)^{M}-1 \\
& i_{a}=(1+0,06 / 4)^{4}-1=6,1 \%
\end{aligned}
$$

Practice Problem

A loan shark lends money on the following terms:
"IF I GIVE YOU $\$ 50$ ON MONDAY, YOU OWE ME $\$ 60$ ON THE FOLLOWING MONDAY"

1. What nominal interest rate per year (r) is the loan shark charging?
2. What effective interest rate per year ($\dot{\psi}$ is he charging?
3. If the loan shark started with $\$ 50$ and was able to keep it, as well as the money he received, loaned out all the times, how much money did he have at the end of one year?

Solution for no. 1 Nominal interest rate per year

Argument:
"IF I GIVE YOU \$50 ON MONDAY, YOU OWE ME \$60 ON THE FOLLOWING MONDAY"
$\mathrm{P}=\$ 50, \mathrm{~F}=\$ 60, \mathrm{n}=1$ (week)
$F=P(F / P, I, 1)$
$60=50(F / P, I, 1) \rightarrow(F / P, I, 1)=1,2 \ggg>$ look through interest tabll
Therefore, $\mathrm{i}=20 \%$ per week

Solution for no. 1 and 2 Nominal and effective interest rate per year

Nominal interest rate per year $=52$ weeks $\times 0,20=10,4=1040 \%$

Effective annual interest rate

$$
\begin{aligned}
& i_{a}=(1+r / M)^{M}-1 \\
& i_{a}=(1+10,4 / 52)^{52}-1 \\
& i_{a}=13.105-1 \\
& i_{a}=13.104=1.310 .400 \%
\end{aligned}
$$

Solution for no. 3 future value at the end of one year

From previous solution we get $\mathbf{i}=20 \%$ per week
The loan who start with $\$ 50$ would get:
$F=P(F / P, I, n)$ or $F=P(1+i)^{n}$
$F=50(1+0,20)^{52}$
$\mathrm{F}=\mathbf{\$} \mathbf{6 5 5 2 3 1 , 5}$
With Nominal interest rate per year 1040% effective interest rate
$1.310 .400 \%$ per year, the loan shark will get $\$ 655,2$ at the end of one year

You can also solve using interpolation formula Compound amount factor for $\mathrm{n}=52$ is located between $\mathrm{n}=50$ to 55

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{n} & (F / P, I, n) \\
\mathrm{X} 1=50 & Y 1=9100,4 \\
\mathrm{X}=52 & \mathrm{Y}=? \\
\mathrm{X} 2=55 & \mathrm{Y} 2=22.644,8
\end{array} \\
\frac{y-9100,4}{22.644,8-9100,4} & =\frac{52-50}{55-50} \\
\frac{y-9100,4}{13.544,4} & =\frac{2}{5}
\end{array} \quad \square \frac{y-y 1}{y 2-y 1}=\frac{x-x 1}{x 2-x 1}
$$

$5 y-45.502=27.088,8$

$$
5 y=
$$

72.590,8

$$
y=
$$

$F=\$ 50(F / P, 20 \%, 52)$
$F=\$ 50(14.518,16)$
$F=\$ 725,908$

■ The more bigger gaps, the more error we get

- Interpolation is just approximation
- To find the future value in this case, using manual formula is recommended

Practice Problem

■ If your credit card calculates the interest based on 12.5\% APR, what is your monthly interest rate and annual effective interest rate, respectively?

- Your current outstanding balance is $\$ 2,000$ and skips payments for 2 months. What would be the total balance 2 months from now?

Solution

- Monthly interest rate $=12,5 \% / 12=1,0417 \%$ per month
- Annual effective interest rate $=13,24 \%$

$$
P=\$ 2000
$$

$$
\square \begin{aligned}
& i_{a}=(1+i)^{M}-1 \\
& i_{a}=(1+0,010417)^{12}-1 \\
& i_{a}=0.132421
\end{aligned}
$$

2 skips payment, total outstanding balance:
$\mathrm{F}=\mathrm{P}(\mathrm{F} / \mathrm{P}, \mathrm{I}, \mathrm{n})$
$\mathrm{F}=2000(\mathrm{~F} / \mathrm{P}, 1.0417 \%, 2) \gg$ find in excel $=\mathrm{FV}(1.0417 \%, 2,0,2000,0)$
$\mathrm{F}=(\$ 2,041.89)$

