INTERNAL RATE OF RETURN

Introduction

- You put money in a bank account and expect to get a return 1 percent
- You can think of investment/business/project in the same way
- Every investment/business/project has their own return, however choose the largest return

Internal Rate Of Return Analysis

- IRR (internal rate of return): produce rate of return while NPV equals to zero
- The value of the interest rate (return), i^{*}, can be calculated by applying present worth analysis or annual worth analysis or future worth analysis

Equation

- $\mathrm{NPV}=0$

Pw inflow - PW outflow $=0$

- Equation

PWinflow = PWoutflow
AW inflow = AWoutflow
FW inflow = Fwoutflow

- You can use "trial error" to find rate of return by applying interpolation

Single Alternative

- You may have to estimate rate of return (i) first then select the decision
- The value of " l " will be compared to MARR value
- What is MARR?

Suppose you inherited Rp 500Million

Assume you have 2 alternatives

■ leave the money in the savings account to earn 6\% interest over 10 years \rightarrow this will be your opportunity cost rate or minimum return required (MARR) for any investment.

- Opening steak restaurant will earn 20\% return over 5 years

Summary

- This business will bring in a 20% rate of return on investment.
- This business will result in a net surplus Rp. 100.000.000 in NPW.

Decision Criterion

- If $\mathrm{i}^{*} \geq$ MARR
- The alternative deserves to be selected

Example

- Baker co has planed to purchase a machine worth to Rp.39.000.000. The annual saving will be estimated at Rp.7.000.000. It has 7 years of useful life and at the end of its useful life the company will sold and approximately worth to Rp.8.000.000. if Baker Co has chosen 8% as MARR, does the Baker co' s decision of buying a machine profitable?

Using Present Worth Analysis

PW inflow	$=$ PW outflow
$8.000 .000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{*}, 7\right)+$	
$7.000 .000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{*}, 7\right)$	$=39.000 .000$

- if $i *=9 \%$, then
$\rightarrow 8.000 .000(0,54703)+7.000 .000(5,03295)=$ 39.606.890
- if i * $=10 \%$, then
$\rightarrow 8.000 .000(0,51316)+7.000 .000(4,86842)=$ 38.184.220

$$
\begin{aligned}
& \text { i* PW } \\
& \begin{array}{|c|c|}
\hline 9 \% & 39.606 .890 \\
\hline X \% & 39.000 .000 \\
\hline 10 \% & 38.184 .220 \\
\hline
\end{array} \\
& =9+\frac{\{39.000 .000-39.606 .890\}}{\{38.184 .220-39.606 .890\}} \times(10-9) \\
& =9+0,426585=9,43 \% \\
& \text { - Since } i^{*} \geq \text { MARR, then the decision is } \\
& \text { favorable }
\end{aligned}
$$

Using Annual Worth

| AW inflow | $=$ AW outflow |
| :--- | :--- | :--- |
| $8.000 .000\left(A / F, \mathrm{i}^{*}, 7\right)+$
 7.000 .000 | $=39.000 .000\left(\mathrm{~A} / \mathrm{P}, \mathrm{i}^{\star}, 7\right)$ |

8.000.000(A/F,i*,7) - 39.000.000(A/P, i*, 7$)$ $=7.000 .000$

- if $\mathrm{i}^{*}=9 \%$
$\rightarrow 8.000 .000(0,10869)-39.000 .000(0,19869)=$ -6.159.390
- if $\mathrm{i}^{*}=10 \%$
$\rightarrow 8.000 .000(0,10541)-39.000 .000(0,20541)=$
-7.167.710

$$
\begin{array}{c|c|}
\hline \text { i* } & \text { AW } \\
\hline 9 \% & -6.159 .390 \\
\text { X \% } & -7.000 .000 \\
10 \% & -7.167 .710 \\
\hline & \text { i }^{*}=9+\frac{\{-7.000 .000-(-6.159 .390)\}}{\{-7.167 .710-(-6.159 .390\}}
\end{array} x^{(10-9)} \begin{gathered}
=9+0,833674=9,83 \%
\end{gathered}
$$

- Since $i^{*} \geq$ MARR, then the decision is favorable

Using Future Worth

FW Inflow

8.000.000 +
7.000.000 (F/A, i $\left.^{*}, 7\right)=39.000 .000\left(F / P, i^{*}, 7\right)$

39.000.000(F/P,i*,7) - 7.000.000 (F/A,i*,7) = 8.000.000

- if $i *=9 \%$
$\rightarrow 39.000 .000(1,82804)-7.000 .000(9,20043)=$ 6.890 .550
- if $i^{*}=10 \%$
$\rightarrow 39.000 .000(1,94872)-7.000 .000(9,48717)=$ 9.589.890

$$
\begin{array}{c|c}
\hline \text { i* } & \text { FW } \\
\hline 9 \% & 6.890 .550 \\
\hline \text { X \% } & 8.000 .000 \\
10 \% & 9.589 .890 \\
\hline & \text { i* }^{*}=9+\frac{\{8.000 .000-6.890 .550\}}{\{9.589 .890-6.890 .550\}}
\end{array} x^{(10-9)}
$$

- Since $i^{*} \geq$ MARR, then the decision is favorable

The different results

- When we applied present worth, annual worth, atau future worth to select the decision, the probability of having different results still exists and can influence to final decision
- To eliminate this problem, you may calculate using incremental analysis

Incremental Analysis

1. Order the alternatives ascendingly
2. Estimate the first "।"
$\checkmark \quad$ You have to compare the first alternative with d nothing DN) in first iteration
\checkmark If the estimation produces $i^{*}<M A R R$, then DN is acceptable
\checkmark If the estimation produces $i^{*} \geq M A R R$, the first alternative will change DN position as acceptable decision,
$\checkmark \quad$ The later alternative or may be second alternative (challenger) will be benchmarked to first alternative
3. Calculate incremental cash flow from both alternative at a certain period using this formula

- Incremental cash flow=second alternative's cash flow- first alternative's cash flow

4. Calculate i* dari from incremental cash flow, you may apply linear interpolation
5. If $i^{*}<$ MARR, the first alternative is till acceptable, however if i^{*} \geq MARR, the second alternative will replace former acceptable decision and next alternative will be challenger alternative
6. Repeat step 3 to 5 until all alternatives has been benchmarked one by one. The last acceptable result will be final and chosen alternative

Problem :

- Baker co has planed to purchase a machine to increase the productivity rate. 2 alternatives has rise up with 10 yeas useful life
■ If annual MARR 9\%, which machine should be invested?

Mesin	Initial investment (Rp.)	Annual profit (Rp.)	Salvage value (Rp.)
X	4.000 .000	1.000 .000	2.500 .000
Y	12.000 .000	3.000 .000	3.000 .000

First step 1 (sorting the alternatives)

- The alternatives should be sorted ascendingly

1. DN alternatives (investment $=0$)
2. first alternative - machine X
(initial value of machine $X=4.000 .000$)
3. second alternative- machine Y
(Initial value of machine $Y=12.000 .000$)

Step 2 Estimate first " ""

$\left.\begin{array}{|c|c|c|c|}\hline \text { Tahun } & \begin{array}{c}\text { ALternatif DN } \\ (1)\end{array} & \begin{array}{c}\text { Alternatif Mesin X } \\ (2)\end{array} & \begin{array}{c}\text { Inkremental } \\ /(3)=(2)-(1)\end{array} \\ \hline 0 & 0 & -4.000 .000 & -4.000 .000 \\ \hline 1-9 & 0 & 1.000 .000 & 1.000 .000 \\ \hline 10 & 0 & 3.500 .000 & \backslash 3.500 .000\end{array}\right]$

Step 4
 (calculate i* form incremental cash flow)

$1.000 .000\left(\mathrm{P} / \mathrm{A}^{2} \mathrm{i}^{*}, 9\right)+3.500 .000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{*}, 10\right)=4.000 .000$

- if $\mathrm{i}^{*}=20 \%$
$\rightarrow 1.000 .000(4,03097)+3.500 .000(0,16151)=4.596 .255$
- if $\mathrm{i}^{*}=25 \%$
$\rightarrow 1.000 .000(3,46313)+3.500 .000(0,10737)=3.838 .925$
- Using linear interpolation for 4.000 .000 can gain internal rate of return :
- i* $\begin{aligned} & =20+\frac{\{4.000 .000-4.596 .255\}}{\{3.838 .925-4.596 .255\}} \\ & =24 \%\end{aligned}$
(Step $5 \rightarrow$ feasibility analysis)
since $i^{*} \geq$ MARR, then purchasing machine x is acceptable
(Step 6)
\rightarrow purchase machine X deserves to be selected the second alternative will be challenger alternative

Repeat step 3 to 6

Tahun	Mesin X (1)	Mesin Y (2)	Ifkremental $(3)=(2)-(1) \backslash$
0	-4.000.000	- 12.000.000	-8.000.000
1-9	1.000.000	3.000.000	2.000.000
10	3.500 .000	6.000 .000	\2.500.000/
Step 3 (calculate incremental cash flow)			

Step 4
 (calculate i* form incremental cash flow)

$2.000 .000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}^{*}, 9\right)+2.500 .000\left(\mathrm{P} / \mathrm{F}, \mathrm{i}^{*}, 10\right)=8.000 .000$

- if i* $=20 \%$
$\rightarrow 2.000 .000(4,03097)+2.500 .000(0,16151)=$ 8.465 .715
- If $\mathrm{i}^{*}=25 \%$
$\rightarrow 2.000 .000(3,46313)+2.500 .000(0,10737)=$ 7.194 .685

Step 5 (feasibility test)

Using linear interpolation for 4.000.000 can gain internal rate of return :

$$
\begin{aligned}
i^{*}= & 20+\frac{\{8.000 .000-8.465 .715\}}{\{7.194 .685-8.465 .715\}} \times(25-20) \\
& =22 \%
\end{aligned}
$$

since $i^{*} \geq$ MARR , then choose machine Y.

