

PMBOK 5 Ed. – DEI-

Project Quality Management

 Quality is degree to which the project fulfills requirements

Project Quality Management

lent

Jeri

Creating and following policies and procedures to ensure that a project meet the defined needs (from the customer's perspective)

Quality vs. Grade

- Quality: the degree to which a set of inherent characteristics fulfill requirements
- Grade: a category assigned to product or service having the same functional use but different technical characteristics

Gold Plating Giving the customer extras \rightarrow not recommended

Just In Time

just when they are needed or just before they are needed. It forces attention on quality practices.

Customer Satisfaction Match the desired expectation, give value added and economical value as well

TQM → Total Quality Management

Company & their employees focus on finding ways to continuous improve the quality of their business practices & products

WITH COUNT OF

Project Quality Management

Set a standard

Plan Quality

Quality Control

Quality Assurance

audit

Monitoring and recording

Plan Quality

- Identifying requirement and/or standards
- documenting how the project will demonstrate compliance.
 - What is quality? How will we ensure it?

Inputs

Project Management Plan Stakeholder register Requirements

Documentation

4. Risk register

5.EEF 6.OPA

Tools & Techniques

- 1. Cost benefit analysis
- 2. Cost of Quality (CoQ)
- 3. Seven Basic Quality tools
- 4. Benchmarking
- 5. Design of experiments
- 6. Statistical sampling
- 7. Additional quality planning tools
- 8. meetings

Outputs

- 1. Quality management plan
- 2. Quality metrics
- 3. Quality checklists
- 4. Process improvement plan
- 5. Project document updates

Cost benefit analysis "Weight the **benefits versus the cost** of meeting quality requirements"

Design of Experiments (DOE)

- •Use **experimentation to statistically** determine what variable will improve quality
- •Systematically changing all of the important factors, rather than changing the factors one at a time"

Statistical Sampling "We need it since studying entire **population would take too long, too much cost**, be too destructive"

Conformance

Money spent during the project to avoid failure. Prevention cost & Appraisal cost

Non-Conformance

Money spent during and after the project because of failure. internal cost & external cost

Cost of Quality

Cost of Conformance	Cost of Nonconformance	
Quality training	Rework/Repair	
Quality audit	Scrap	
Studies, Surveys	Inventory cost	
Effort to ensure everyone knows the process to use to complete their work	Warranty cost	
Quality staff	Lost business	

Cost of Quality Before and After Quality Initiative : % OF TURNOVER Savings rework Rework Inspection Inspection **Prevention** prevention IAMPI 2014 pto

Before

After

Ishikawa

checksheet

Scatter

Histogram

Pareto

Flow chart

Run chart

Quality_ tools

Ishikawa

IAMPI 2014 pto

Cause and Effect (Ishikawa) Diagram:

Ishikawa exmple

• Ihikawa/Fishbone chart/ cause effect diagram/ 5 whys,

Checksheet

Checksheet → collect and analyze data.

System complaints								
		Day						
Source	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Total
Email								12
Text	₩		₩.					29
Phone call				ļ				8
Total	11	10	8	6	7	3	4	49

System Complaints

Scatter Diagram

Scatter diagram/Regression Analyis→

•if there is a relationship between two variables, diagonal

Scatter Diagram

SCATTER DIAGRAM (Low to Moderate Negative)

SCATTER DIAGRAM (Highly Negative)

IAMPI 2014 pto

Scatter Diagram

Scatter Diagram :

SCATTER DIAGRAM (Highly positive)

Histogram

• **Histogram**→ a bar graph of a distribution of variables.

Pareto

Pareto→ a histogram that can help you identify and prioritize problem areas. 80/20

Pareto example

Monthly Line Rejection (Sept 2012)

Monthly Line Rejection (Sept 2012)

Reject Item	Frequency	Percentage from Total
Solder Short	222	33%
No Solder	198	30%
Missing	49	7%
Solder crack	33	5%
Solder pinhole	57	9%
Solder ball	99	15%
others	10	1%
Total	668	100%

Reject Item	Frequency	Accumulation Frequency	Percentage from Total	Accumulation Frequency
Solder Short	222	222	33%	33%
No Solder	198	420	30%	63%
Solder ball	99	519	15%	78%
Solder pinhole	57	576	9%	86%
Missing	49	625	7%	94%
Solder crack	33	658	5%	99%
others	10	668	1%	100%
Total	668		100%	3

Pareto example

Flow chart

 Flowcharting
 analyze how problems occur and how processes can be improved.

Run chart

Run Chart: To look at history and see a pattern of variation

Control chart

SIX SIGMA→ achievement of no more than 3.4 defects, errors, or mistakes per million opportunities.

Additional Quality Planning tools etine Control Measure Improve Analyze

66 YOU CAN'T MANAGE WHAT YOU DON'T MEASURE.

- W. Edward Deming

Deming's 14 Points on Quality Management A core concept on implementing total quality management (TQM) PLAN \rightarrow DO \rightarrow CHECK \rightarrow ACTION

Joseph Juran Juran's trilogy on TQM 1. Planning 2. Improve 3. Control

Philip Corsby "Zero defect philosophy Quality is free" 14 principals on TQM

Genichi Taguchi Quality must be desgined And robust A statistical method

'roject management method

Deliverable measurement

Quality Management Plan

Major checkpoint

Quality metrics and chekclist

Quality Management Plan

Quality metrics

"Translating customer's requirement to a specific measurement"

Quality metrics

Example:

Number of customer satisfaction Number of defect Availability of good service

Quality metrics is input for

- Quality Assurance AND
- Quality Control

Quality checklist is input for

Quality Control ONLY

A list of items to inspect, step to be performed and note if any defects found

Example of quality checklist

- **Generationality and features test**
- **Osystem outputs test**
- **Performance** test
- **Reliability** test
- **OMaintainability test**

Quality Assurance

Auditing the quality requirement and the result of quality control

> Are we using the standard? Can we improve the standard?

Inputs

1.Quality Management plan

- 2.Process improvement plan
- **3.**Quality metrics

4. Quality control measurement

5.Project Documents

Tools & Techniques

- 1. Plan quality and Perform Quality Control tools & techniques
- 2. Quality audits
- **3.**Process analysis

Outputs

- 1. Organizational process updates
- 2. Change requests
- 3. Project management plan updates
- 4. Project document updates

What must we do in quality audit?

PLAN

"Check out the compliance of quality action with company policies, standards & procedures"

"Determine whether they are used efficiently & effectively"

"Identify all the good practices being implemented"

"Identify all the gaps/shortcomings"

"Look for **new lesson learned** & good practices"

Quality Control

Monitoring and recording results of executing the quality activities to assess performance and recommend necessary changes

Inputs

- 1. Project management plan
- 2. Quality metrics
- 3. Quality checklist
- 4. Work performance measurements
- 5. Approved change requests
- 6. Deliverables
- 7. Project Documents
- 8. OPA

Tools & Techniques

- 1.Seven Basic quality tools
- 2.Statistical sampling
- **3.Inspection**
- 4.Approved change request reviews

Outputs

- 1. Quality control measurements
- 2. Validated changes
- 3. Validated deliverables
- 4. Works Performance informations
- 5. Organizational process updates
- 6. Change requests
- 7. Project management plan updates
- 8. Project document updates

Chemical Bank mistakenly deducted about \$15 million from more than 100,000 customer accounts.

"The problem resulted from a single line of code in an updated computer program that caused the bank to process every withdrawal and transfer at its automated teller machines (ATMs) twice".

BACKUP SLIDES

Important Terms

- Mutual Exclusive: if two events cannot both occur in a single trial
- Probability: something will occur
- Normal Distribution: common probability density distribution chart
- Statistical independence: the probability of one event occurring does not affect the probability of another event occurring
- Standard deviation (or Sigma): how far you are from the mean
- 3 or 6 sigma
 - Represent the level of quality has decided to try to achieve
 - 6 σ is higher quality standard than 3 σ
 - Used to calculate the upper and lower control limits in a control chart

Number of σ	Percentage of occurrences between two control limits
1	68.26%
2	95.64%
3	99.73%
6	99.99985%